THE NULL Homotopic maps

Prof. Dr. Hana' M. Ali

THE NULL HOMOTOPIC MAPS

Prof. Dr. Hana' M. ALi

DEFINITION:

Let $f: X \to Y$ be a continuous map between two topological spaces. f is said to be null homotopic if it is homotopic to constant map $C: X \to Y$, (i.e. For some $y \in Y$, C(x) = y for each $x \in X$).

Examples:

- 1. Any constant map is null homotopic.
- 2. Any continuous map $f: X \to \mathbb{R}^n$ from any topological space X into the Euclidean space \mathbb{R}^n is null homotopic.
- 3. Any continuous map $f: X \to Y$ from any topological space X into a convex subset Y of the Euclidean space \mathbb{R}^n is null homotopic. (A subset Y of the Euclidean space \mathbb{R}^n is called convex if $\forall y, y' \in Y$, the line segment { $(1 t)y + ty' | 0 \le t \le 1$ } $\subseteq Y$).
- 4. Any continuous map $f: X \to Y$ from any topological space X into a Starlike subset Y of the Euclidean space \mathbb{R}^n is null homotopic. (A subset Y of the Euclidean space \mathbb{R}^n is called Starlike if there exists $y_0 \in Y$, for each $y \in Y$, the line segment $\{(1-t)y + ty_0 | 0 \le t \le 1\} \subseteq Y$).

REMARK: every convex subset *Y* of the Euclidean space \mathbb{R}^n is Starlike, but the converse need not to be true in general as we shown in the following figures:

REMARK: Null homotopic maps need not to be homotopic.

A JOIN PX

Prof. Dr. Hana' M. ALi

DEFINITION:

Let *X* be a topological space and $p \notin X$ be a point. Consider the disjoint union $p \sqcup X \times I$ of the point *p* and the product space $X \times I$. Define an equivalence relation $\sim \text{on } p \sqcup X \times I$ as; $p \sim (x, 1)$. Let $pX = p \sqcup X \times I/\sim$ be the quotient space, (that is pX is a topological space with identification topology that induced from the identification map $\theta: p \sqcup X \times I \rightarrow pX$ that defined as;

$$\theta(p) = \theta(x, 1) = [p]$$
 and $\theta(x, t) = [(x, t)] = [x, t]$, for all $x \in X$ and $0 \le t < 1$).

THEOREM: A mapping $f: X \to Y$ is null homotopic if an only if, f may extended to all of a join pX.

Proof:

Firstly, suppose $g: pX \to Y$ be an extension map of f, then we have the following commutative diagram:

i.e., $g_{X \times \{0\}} = f$, where $G = \theta_{X \times I} \colon X \times I \to pX$ is a continuous map given by, G(x, t) = [x, t], for all $x \in X$ and $0 \le t < 1$. Then we have a continuous map $g \circ G \colon X \times I \to Y$ with:

 $g \circ G(x, 0) = g(G(x, 0)) = g(x, 0) = f(x)$ and $g \circ G(x, 1) = g(G(x, 1)) = g(p)$, for all $x \in X$. But $g \circ G(x, 1) = C_{g(p)}(x)$ is a constant map. Therefore, $g \circ G$ is a homotopy from f into a constant map. Hence f is null homotopic.

Homework: prove the second direction.

7

THANK YOU FOR YOUR ATTENTION